
Inside the Request-Response Loop

2

Inside the Request-Response Loop

WebObjects applications are event driven, but instead of responding to mouse
and keyboard events, they respond to HTTP requests. A WebObjects
application receives a request, responds to it, then waits for the next request.
The application continues to respond to requests until it terminates. On each
cycle of this request-response loop, the application stores user input, invokes an
method if one is associated with the user’s action, and generates a response—
usually an HTML page.

Most of your program’s activity is a reaction to messages the application sends
out during a cycle of the request-response loop. These messages are hooks into
the loop from which you can invoke your application’s custom behavior. This
chapter discusses the flow of control inside the request-response loop and the
request-response loop hooks.

Starting the Request-Response Loop

This section looks at handling requests in a typical application, beginning where
the application itself begins, with the code that sets up the request-response
loop. A WebObjects application begins just as a C program does, by calling its
main() function. In a WebObjects application, main() is usually very short. Its job
is to set up a WOApplicationAdaptor object and turn over control of the program
to it. Generally, main() is just a few lines of code:

void main(int argc, char *argv[]) {

 NSAutoreleasePool *pool;

 WOApplicationAdaptor *adaptor;

WOWebScriptApplication *application;

pool = [[NSAutoreleasePool alloc] init];

adaptor = [[[WOApplicationAdaptor alloc] init] autorelease];

application = [[[WOWebScriptApplication alloc]

initWithArgC:argc argV:argv]

autorelease];

[adaptor runWithApplication:application];

 [pool release];

 exit(0);

}

The main() functions you write should look identical or much the same.

This version of the main() function creates an autorelease pool that’s used for the
automatic deallocation of objects that receive an autorelease message. Next, it
creates a WOApplicationAdaptor object that handles communication between

PRELIMINARY 3

Inside the Request-Response Loop Starting the Request-Response Loop

an HTTP server and the WOWebScriptApplication object, which is created in
the next statement.

The runWithApplication: method initiates the request-response loop. As shown in
Figure 1, in each cycle of the loop the WOApplicationAdaptor receives an
incoming request, forwards it to the WOWebScriptApplication object, and
returns the outgoing response from the WOWebScriptApplication.

Figure 1. The Request-Response Loop

The last statement in this version of main() releases the autorelease pool, which
sends release messages to any object that has been added to the pool since the
application began.

Most of an application’s time is spent in the request-response loop started by
runWithApplication:, getting and responding to requests. You can participate in
request and response handling by taking advantage of hooks into the request-
response loop. For example, you can determine what page to return based on
user input and modify the header lines of a generated HTTP response.

There are three types of hooks:

• awake methods that are invoked at the point in the request-response loop just
before the receiver begins to participate in the request handling

• Action methods that are associated with a particular user action such as clicking
a button or hyperlink

• Request and response handling methods that are invoked at a particular point in
the request-response loop if you implement them:

willPrepareForRequest:inContext:
didPrepareForRequest:inContext:
willGenerateResponse:inContext:
didGenerateResponse:inContext:

WOApplication
Adaptor

WOApplication

Request

Response

Inside the Request-Response Loop Flow of Control in the Request-Response Loop

4 PRELIMINARY

To understand when these methods are invoked and what you can use them for,
you need to understand the sequence of events in a cycle of the request-
response loop. The following section describes the sequence. Information on
using the request-response loop hooks is presented later in this chapter.

Flow of Control in the Request-Response Loop

Each cycle of the request-response loop has three phases:

• Preparing for the request
• Invoking an action
• Generating a response

The following sections describe the sequence of events that occur in each
phase.

Preparing for the Request
All requests received by a WebObjects application are associated with one of the
application’s pages—the request page. If the request doesn’t explicitly specify a
page, the WOWebScriptApplication object associates the request with a page
named “Main”. During the first phase of the request-response loop, the
application finds or creates a component to represent the request page. This
component—called the request component—is represented with an instance of a
custom WOComponentController subclass or a
WOWebScriptComponentController.

If the WOWebScriptApplication object has already created a component to
represent the request page, it uses that same component. If it hasn’t, the
WOWebScriptApplication object performs the following steps to create it:

1. It looks in the Objective-C runtime system for a class with the same name as
the request page. If it finds a class with the same name, it creates an instance
of that class. For example, if the request specifies a request page named
“LoginPanel” and a class with the same name is present in the Objective-C
runtime system, the WOWebScriptComponentController instantiates a
LoginPanel object as the request component.

2. If the WOWebScriptApplication object fails to find a class in the runtime, it
creates an instance of WOWebScriptComponentController.

Note: A WOWebScriptApplication object follows this same procedure whenever
it’s called upon to provide a component.

PRELIMINARY 5

Inside the Request-Response Loop Flow of Control in the Request-Response Loop

During the first phase of the request-response loop, the request component
assigns user input to variables. This is the basic sequence of events in preparing
for a request:

1. The WOWebScriptApplication object restores the values of all session and
persistent variables. For more information on how a WebObjects application
manages state, see the chapter “Managing State.”

2. The WOWebScriptApplication object receives a willPrepareForRequest:inContext:
message.

3. The request component receives a prepareForRequest:inContext: message.
prepareForRequest:inContext: invokes the request component’s
willPrepareForRequest:inContext: method, stores user input in variables according
to the component’s declarations file, and then invokes the request
component’s didPrepareForRequest:inContext: method.

4. The WOWebScriptApplication object receives a didPrepareForRequest:inContext:
message.

Invoking an Action
In the second phase the request-response loop, the request component receives
an invokeActionForRequest: inContext: message. invokeActionForRequest: inContext:
determines whether or not the user has triggered an action. If an action has been
triggered—for example, if the user clicked a button or a hyperlink—the
application invokes the action method that corresponds to what the user did. An
action method returns the response component—the component responsible for
generating an HTTP response. If the user has not triggered an action, the
request component is used as the response component.

Generating a Response
In the final phase of requst-response loop, the response page generates an
HTTP response. Generally, the response contains a dynamically generated
HTML page.

This is the basic sequence of events in generating a response:

1. The WOWebScriptApplication object stores the values of all session and
persistent variables. Subsequent changes to session and persistent variables
will not be preserved in the next cycle of the request-response loop. For more
information on how a WebObjects application manages state, see the chapter
“Managing State.”

Inside the Request-Response Loop Flow of Control in the Request-Response Loop

6 PRELIMINARY

2. The WOWebScriptApplication object receives a willGenerateResponse:inContext:
message.

3. The response component receives a generateResponse:inContext: message.
generateResponse:inContext: invokes the request component’s
willGenerateResponse:inContext: method, generates an HTTP response using the
response component’s HTML template, and then invokes the response
component’s didGenerateResponse:inContext: method.

4. The WOWebScriptApplication object receives a didGenerateResponse:inContext:
message.

Figure 2. The Sequence of Events in One Cycle of the Request-Response Loop

prepareForRequest:
inContext:

Restore session and
persistent variables

WOApplication or
Application script

willPrepareForRequest:
inContext:

Request Component

didPrepareForRequest:
inContext:

invokeActionForRequest:
inContext:

Request Component

Set variables from user
input

Store session and
persistent variables

WOApplication or
Application script

generateResponse:
inContext:

didGenerateResponse:
inContext:

willGenerateResponse:
inContext:

Response Component

willPrepareForRequest:
inContext:

didPrepareForRequest:
inContext:

WOApplication or
Application script

willGenerateResponse:
inContext:

didGenerateResponse:
inContext:

WOApplication or
Application script

PRELIMINARY 7

Inside the Request-Response Loop awake Methods

awake Methods

There are two types of awake methods: an application awake method and a
component awake method. Both awake methods provide an opportunity for the
receiver to perform initialization before it participates in request handling. The
biggest difference between the two is that an application awake method is only
invoked once, whereas component awake methods can be invoked many times.

Application awake
The application awake method is invoked when the application receives its first
request and never again. It’s common to initialize global variables in an
application awake method. For example, the Application.wos script in the
DodgeLite example initializes the global variable dodgeData from a file:

- awake {

 id filePath = [WOApp pathForResource:@"DodgeData" ofType:@"dict"];

 dodgeData = [NSDictionary dictionaryWithContentsOfFile:filePath];

}

See DocumentRoot/WebObjects/Examples/DodgeLite for the complete DodgeLite
source.

The WOWebScriptApplication class defines the awake method, which is
invoked when an instance receives its first request from a
WOApplicationAdaptor object. WOWebScriptApplication’s awake
implementation invokes the awake method defined in the corresponding
Application.wos if one exists. You can subclass WOWebScriptApplication and
override awake to perform any necessary initialization. It is more common,
however, to implement the awake method in an application script.

Because the application awake method is invoked only once in an application’s
lifetime, changing a scripted application awake method has no effect on a
running WebObjects application that has received its first request. You must
restart an application for changes to a scripted application awake method to have
an effect.

In addition to using the application awake method to initialize global variables,
you can also use it to configure the application’s behavior. For example, you can
set a session timeout and enable component caching:

// Timeout sessions that have been inactive for more than 2 minutes.

[WOApp setSessionTimeOut:120];

[WOApp setCachingEnabled:YES];

Inside the Request-Response Loop awake Methods

8 PRELIMINARY

Component awake
A component awake method is invoked at the point in a cycle of the request-
response loop just before the receiver begins to participate in request handling.
It’s common to implement a component awake method that initializes
transaction and persistent variables. For example, the Main.wos script in the
CyberWind application uses awake to initialize the options transaction variable:

- awake {

options = @("See surfshop information", "Buy a new sailboard");

 return self;

}

See DocumentRoot/WebObjects/Examples/CyberWind for the complete CyberWind
source.

The WOComponentController class—an abstract class that implements basic
component behavior—defines the awake method. In WOComponentController,
awake’s implementation does nothing, but you can subclass
WOComponentController and override awake to perform any necessary
initialization. It is equally common, however, to implement the awake method
in a component script. The WOComponentController subclass
WOWebScriptComponentController overrides awake to invoke the awake
method defined in the corresponding script file if one exists.

For a given component, the awake method is invoked only once in a cycle of the
request-response loop. Furthermore, a component’s awake method is invoked
only in cycles in which the component is participating. Generally, a component
participates in a cycle of the request-response loop if:

• It represents the request page—the page associated with the request.
• It represents the response page—the page returned to the server.
• It’s nested in either the request or response page.
• It’s messaged in any other way during the current cycle.

As an example of the latter, the following method messages the component
associated with the “LoginPanel” page:

- messageCountString

{

id loginPage = [WOApp pageWithName:"LoginPanel"];

id userName = [loginPage userName];

id messagesCount = [messages count];

id countString;

if (messagesCount == 0)

countString = @"No messages";

PRELIMINARY 9

Inside the Request-Response Loop Action Methods

else if (messagesCount == 1)

countString = @"1 message";

 else

countString = [NSString stringWithFormat:@"%@ messages", messageCount];

return [NSString stringWithFormat:@"%@ for %@", countString, userName];

}

If the “LoginPanel” component is not already participating in the request-
response loop when messageCountString is invoked, the pageWithName message to
WOApp creates the component and sends it an awake message.

A component awake method is invoked at different points in the request-
response loop depending on when the component begins participating. Before
an application dispatches a message to a component, the application invokes the
component’s awake method if the component has not received an awake message
in the current cycle of the request-response loop. Thus, the awake method is
invoked before any other method, and won’t be invoked again until the next
cycle in which the component participates.

The awake method is the best place to initialize transaction and session
variables. The advantage of using awake to perform this type of initialization is
that the variables are guaranteed to be initialized before any other methods are
invoked.

Action Methods

An action method is a method that’s associated with a user action. You associate
methods with a user action using a dynamic element. For example,
WOSubmitButton has an attribute named action to which you can assign a
method. When the submit button in the corresponding HTML page is clicked,
the action method is invoked in the subsequent cycle of the request-response
loop. This declaration in the HelloWorld application associates the action
method sayHello with a submit button:

SUBMIT_BUTTON: WOSubmitButton {action = sayHello};

Clicking the submit button sends a request to the HelloWorld application,
initiating a cycle of the request-response loop in which sayHello is invoked.

Note: The WOActiveImage, WOHyperlink, and WOForm dynamic elements
can also be used to associate action methods to a user action.

Inside the Request-Response Loop Action Methods

10 PRELIMINARY

Action methods take no arguments and return a component responsible for
generating an HTTP response. For example, the sayHello action method is
defined as follows:

- sayHello

{

 id nextPage = [WOApp pageWithName:@"Hello"];

[nextPage setNameString:nameString];

 return nextPage;

}

As in sayHello, most action methods perform page navigation. It is common for
action methods to determine the response page based on user input. For
example, the following action method returns an error page if the user has
entered an invalid part number (stored in the transaction variable partnumber) or
an inventory summary otherwise.

- showPart {

 id errorPage;

 id inventoryPage;

 if ([self isValidPartNumber:partnumber]) {

errorPage = [WOApp pageWithName:@"Error"];

[errorPage setErrorMessage:@"Invalid part number."];

return errorPage;

 }

inventoryPage = [WOApp pageWithName:@"Inventory"];

[inventoryPage setPartNumber:partnumber];

return inventoryPage;

}

Action methods don’t have to return a new page. They can instead direct the
application to regenerate the request page. When an action method returns nil,
the application uses the request component as the response component.

Note: Returning self in an action method generally has the same effect as
returning nil. However, there’s a difference when the action method is
implemented in a nested component. When a nested component—a
component representing only a portion of the request page—returns self in an
action, the application attempts to use the nested component to generate the
response page. Since the component only represents a portion of a page,
returning self is probably an error. Returning nil always has the effect of using the
request component—the component representing the whole request page—as
the response component. As a result, returning nil is considered to be a better
practice than returning self.

PRELIMINARY 11

Inside the Request-Response Loop Request and Response Handling Methods

In the Visitors example, the request page is also used as the response page. The
WebScript recordMe action method records the name of the last visitor and clears
the text field:

- recordMe

{

 if ([aName length]) {

[WOApp setLastVisitor:aName];

[self setAName:@""]; // clear the text field

}

}

Request and Response Handling Methods

WebObjects defines four request and response handling methods that are
invoked at particular points in the request-response loop if you implement
them:

• willPrepareForRequest:inContext:
• didPrepareForRequest:inContext:
• willGenerateResponse:inContext:
• didGenerateRequest:inContext:

As with awake methods, the request and response handling methods can be
implemented for an application and its components. Both versions of a request-
handling method work identically, and can be used for identical purposes. You
choose to implement a method for the application or for a component based on
which is more appropriate for the behavior you need to provide. Generally, you
implement request and response handling methods in the application when the
request handling behavior should be invoked for every request. You implement
request and response handling methods in a component when the request
handling behavior should be invoked only for a particular page.

The WOWebScriptApplication class defines each of the request and response
handling methods. Its implementations invoke the corresponding method
defined in the corresponding Application.wos if one exists. For example,
WOWebScriptApplication’s willPrepareForRequest:inContext: invokes the
willPrepareForRequest:inContext: method in the corresponding Application.wos if it
exists. You can subclass WOWebScriptApplication and override the request and
response handling methods, but it is more common to implement them in an
application script.

Inside the Request-Response Loop Request and Response Handling Methods

12 PRELIMINARY

WOComponentController defines each of the request and response handling
methods as well, but WOComponentController’s implementations do nothing.
You can subclass WOComponentController and provide your own
implementations, but it is equally common to implement a component’s request
and response handling methods in a component script. The
WOComponentController subclass WOWebScriptComponentController
overrides the request and response handling methods to invoke them in the
corresponding component script if they exist.

The remainder of this section discusses some of the common uses of the request
and response handling methods.

willPrepareForRequest:inContext:
This method is invoked before the application stores user input. It is common
to use this method to access request and context information. For example, the
following implementation of willPrepareForRequest:inContext: records the kinds of
browsers—user agents—from which requests are made:

- willPrepareForRequest:request inContext:context {

id requestHeaders = [request headers];

id userAgent = [requestHeaders objectForKey:@"user-agent"];

[WOApp recordUserAgent:userAgent];

return nil;

}

The first argument to willPrepareForRequest:inContext: is a WORequest object. A
WORequest object encapsulates information from an HTTP request such as
the method line, request headers, URL, and form values. The second argument
is a WOContext object. A WOContext object contains application specific
information such as the path to the request component’s directory, the version
of WebObjects that’s running, the name of the application, and the name of the
request page.

You can also use willPrepareForRequest:inContext: to substitute a different object for
the request page. If this method returns a non-nil value, prepareForRequest:
inContext: is sent to the substituted object. If you implement this method in the
application and return a non-nil value, the substitute object will receive a
willPrepareForRequest:inContext: message as well.

didPrepareForRequest:inContext:
This method is invoked after the request page has processed user input. You can
use this method to substitute a different object for the request page before an
action method is invoked. If this method returns a-non nil value,

PRELIMINARY 13

Inside the Request-Response Loop Request and Response Handling Methods

invokeActionForRequest:inContext: is sent to the substituted object. The use of this
method to substitute an object at this point in the cycle is very rare.

willGenerateResponse:inContext:
This method is invoked before the application generates HTML for the
response. You can use this method to substitute a different object for the
response page before a response is composed. If this method returns a non-nil
value, generateResponse: inContext: is sent to the substituted object. If you
implement this method in the application and return a non-nil value, the
substitute object will also receive a willGenerateResponse:inContext: message.

The most common use of this method is to implement security features. You can
use willGenerateResponse:inContext: to return a login page if the user has not yet
provided valid login information. The advantage of using willGenerateResponse:
inContext: over any other hook is that this method is always invoked before
generating a response.

You can’t rely upon an action to implement the same functionality. By specifying
a page in a URL, a user can attempt to access any page in an application without
invoking an action. For example, you can access the second page of HelloWorld
without invoking the sayHello action by opening the URL:

http://serverhost/cgi-bin/WebObjects/Examples/HelloWorld/Hello.wo/

When a WebObjects application receives such a request, it cycles through the
request-response loop as usual, but there is no user input to store and no action
to invoke. As a result, the object representing the requested page—Hello in this
case—generates the response.

By implementing a login mechanism in willGenerateResponse:inContext:, you can
prevent users from accessing pages without authorization.

didGenerateRequest:inContext:
This method is invoked after the response page has generated a response. You
can use this method to substitute a different object for the response page after a
response has already been composed. If this method returns a non-nil value,
willGenerateResponse:inContext: and generateResponse: inContext: messages are sent to
the substituted object.

A more common use of didGenerateRequest:inContext: is to perform session clean up.

Inside the Request-Response Loop Summary

14 PRELIMINARY

Summary

How is the request-response loop started?
The request response loop is started in the main() function with the
WOApplicationAdaptor method runWithApplication:.

What request-response loop hooks can you implement?
There are three types of hooks into the request-response loop:

• Action methods that are associated with a particular user action such as clicking
a button or hyperlink

• awake methods that are invoked at the point in the request-response loop just
before the receiver begins to participate in the request handling

• Request and response handling methods that are invoked at a particular point in
the request-response loop if you implement them

You can participate in the request-response loop by implementing any of the
hooks provided.

What you can use the hooks for?
The following list summarizes common uses of the request-response loop
hooks:

• Action methods perform page navigation.

• Application awake methods initialize global variables and configure
application behavior.

• Component awake methods initialize transaction and persistent variables.

• willPrepareForRequest:inContext: methods substitute a different object for the
request page before user input is processed.

• didPrepareForRequest:inContext: methods substitute a different object for the
request page before an action method is invoked.

• willGenerateResponse:inContext: methods substitute a different object for the
response page before a response is composed. For instance, this method can
be used authorize access with a login page.

• didGenerateResponse:inContext: methods substitute a different object for the
response page after a response has already been composed and perform
session clean up.

